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On the Generalized Minimum Spanning Tree in the Euclidean Plane
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Abstract

We aim at finding a minimum spanning tree consisting
of exactly one point per cluster, for a set of n points
in the plane partitioned into k < n clusters. We show
that this problem is NP-complete even if every cluster
contains two points with equal y coordinates. Further,
we show that this problem does not have an FPTAS
unless P = NP .
Keywords: Minimum Spanning Tree, NP-

completeness, Approximation Algorithm

1 Introduction

In this paper, we study Generalized Minimum Spanning
Tree (GMST) problem in the plane. First we review the
GMST problem on graphs. Given a connected undi-
rected graph G = (V,E) in which nodes are partitioned
into k clusters:

V = V1 ∪ V2 ∪ .... ∪ Vk ∀i ̸= j, Vi ∩ Vj = ∅, (1)

where Vi is a subset of nodes. The GMST problem is to
find a Minimum Spanning Tree (MST) which consists
of exactly one point from each cluster.
The GMST problem on graphs was proved NP-hard

by a reduction from the Vertex Cover problem [9]. It was
also proved that the GMST problem on graphs cannot
be approximated within any constant factor [10]. Fur-
thermore when G = (V,E) is a tree, the problem is
NP-hard [10]. However, there is an approximation al-
gorithm for the GMST problem when the cluster size
is bounded by a constant ρ. In this case, the GMST
problem can be approximated to within 2ρ [11].
A geometric version of the GMST problem was stud-

ied with grid clustering. In this version, the graph
was considered complete and the nodes are placed in
a (r × l)-grid and weight of each edge is the distance
between two nodes. The nodes belonging to a cell of
the grid make a cluster. A PTAS for the GMST prob-
lem with grid clustering was proposed in [3]. Moreover,
a (1+4

√
2+ ϵ)-approximation algorithm was presented

for the GMST problem with the grid clustering [1]. The
existence of a PTAS shows that the GMST problem
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with grid clustering is easier than the GMST problem.
An alternative version of the GMST problem focuses
on finding the MST which consists of at least one point
per cluster [7]. The NP-completeness of this version
was shown in [7] including the case where each cluster
contains three points. Additionally, it was shown that
this version cannot be approximated within any con-
stant factor [12]. Also it was shown that this version
of the GMST problem with grid clustering is strongly
NP-hard even if non-empty grid cells are connected and
each grid cell (cluster) contains at most two points [5].
Further, a (r × l)-grid (r ≤ l) was used in [5] and a
dynamic programming algorithm was presented which
solves this version in O(lρ6r234r

2

r2) time. Note that if
r or l are bounded, this algorithm is polynomial. Fer-
emans et al. [5] using the dynamic programming algo-
rithm, presented a PTAS when all non-empty grid cells
are connected and the number of non-empty grid cells
is superlinear in r and l.
The Class Steiner Tree (CST) problem (known also

as Group Steiner Tree (GST) problem) is similar to the
GMST problem. A short review of the CST problem is
provided in the following.
Given a connected undirected graph G = (V,E) in

which the nodes are partitioned into disjoint sets, such
that:

V = S ∪R1 ∪ ... ∪Rk, (2)

where Ri is a required class for i = 1, 2, ..., k and S is
Steiner class, the CST problem tries to find an MST
which include at least one node per required class. The
CST problem was proved to be NP-hard even if there is
no Steiner node, the weight of all edges are unit and the
nodes degree are less than or equal to three [6]. Finally,
the CST problem cannot be approximated within any
constant factor even for trees without Steiner node and
unit edges [6].
As pointed out before, the focus of this paper is on

studying the GMST problem in the plane (not graph).
Hence, for a given set P containing n points in the plane
which is partitioned into k clusters:

P = P1 ∪ P2 ∪ .... ∪ Pk ∀i ̸= j, Pi ∩ Pj = ∅, (3)

the GMST problem in the plane tries to find an MST
which consists of exactly one point from each cluster.
We prove that the GMST problem in the plane is NP-

complete even if each cluster contains two points with
equal y coordinates. We further prove that this problem



ICCG 2018: 1st Iranian Conference on Computational Geometry

does not have an FPTAS unless P = NP . This version
is a simple case of the GMST problem.

2 NP-completeness of the GMST Problem in the
Euclidean Plane

By a reduction from the planar 3SAT problem we prove
that the GMST problem in the Euclidean plane is NP-
complete.
Consider the 3SAT problem where C =

{c1, c2, ..., cm} is the set of clauses and V =
{v1, v2, ..., vn} is the set of variables. Create a
graph G = (U,E) for every instance of the 3SAT
problem such that:

U = C ∪ V, (4)

and
E = E1 ∪ E2, (5)

where E1 and E2 are:

E1 = {(ci, vj) | vj ∈ ci or vj ∈ ci} (6)

and

E2 = {(vj , vj+1) | 1 ≤ j < n} ∪ {(vn, v1)}. (7)

The set of all edges in E2 is called spinal path [4].
There is a node for each variable and for each clause in
the graph G, resulting in |U | = |C| + |V |. Draw one
edge between a variable node and a clause node in G, if
and only if the clause contains a literal of the variable.
The planar 3SAT problem includes all instances of the
3SAT problem with similar planar graphs. The planar
3SAT is proved to be NP-complete by a reduction from
the 3SAT problem [8].

Theorem 1 The GMST problem in the plane is NP-
complete. This claim is true even under the constraint
that every cluster contains two points with equal y co-
ordinates. Also the GMST problem does not have an
FPTAS unless P = NP .

Proof. We utilize a similar approach to that of The-
orem 7 in [4] for demonstrating the correctness of the
theorem. As such, We perform the proof by using a re-
duction from the planar 3SAT problem for the GMST
problem.
Every instance of the planar 3SAT problem should be

converted to an instance of the GMST problem in the
plane. First, we design two gadgets for the variables
and clauses called variable gadget and clause gadget , re-
spectively. The design of these gadgets is based on some
clusters of points where every cluster consists of a pair
of points. The designed gadgets in the graph of ϕ are
replaced as follows: if a node in the graph of ϕ is corre-
sponding to a variable in ϕ, it is replaced by a variable

gadget and if it is corresponding to a clause in ϕ, it
is replaced by a clause gadget. Consequently, we re-
place all the nodes in the graph of ϕ with the gadgets.
One should ensure that the number of clusters (pairs
of pionts) in this reduction is polynomially bounded
in the size of ϕ. Therefor, we use a special drawing
graph called orthogonally drawing [2]. In the orthogo-
nally drawing each node is shown with a rectangle and
each edge is denoted by a sequence of vertical and hor-
izontal segments. The orthogonally drawing provide a
practical mean to draw the graph in the defined space.
To continue, we need the Theorem 2 from [2]. The the-
orem is provided below.

Theorem 2 [12, Theorem 4] Let H be a simple graph
without nodes of degree ≤ 1, where n is the number of
nodes and m is the number of edges. Then H has an
orthogonally drawing in an (m+n

2 × m+n
2 )-grid with one

bend per edge. The box size of each node v is at most
deg(v)

2 × deg(v)
2 . It can be found in O(m) time.

At this stage, we want to convert the planar 3SAT
instance to a GMST instance. Therefor we first draw
the orthogonally drawing and then, replace the variable
gadgets with the variables and the clause gadgets with
the clauses.

2.1 Variable Gadget

For each variable in the planar 3SAT instance, we de-
sign a gadget which consists of k cluster, such that k
is an even number and 4 ≤ k ≤ 2c+ 4, where c is the
number of clauses that include this variable. Consider
two variables i and j such that 1 ≤ i ≤ k. Variable
i is the number of the clusters and j is an index of i
which is equivalent to the number of points in the clus-
ter. Because there are only two points in every cluster,
we set j = 0 or j = 1. The j = 0 and j = 1 cases
correspond to the first and second points in the cluster,
respectively. If the coordinates of the first point in the
first cluster is denoted by (x, y), then for every i and j
where 1 ≤ i ≤ k − 1 and j = 0, 1, coordinates of point
ij are

(x+ 2(i− 1) + j, y + ((i+ 1) mod 2)).

This way, k−1 clusters are being embedded in the plane
and the coordinates of the points in the cluster k are
(x−

√
5, y) and (x+2(k−1)−1+

√
5, y). Consequently,

the placement of these points in the plane leads to a
structure which is a part of the variable gadget. We
denote this structure by A.
Structure A with k = 8 is depicted in Figure 1. Here,

the location of the points in the plane is not important
but the distance between them is an issue.
The proof of the Theorem 1 and the design for the

variable gadget are not completed yet, we need Lemma
3 in that regard.
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Figure 1: Structure A. The segment between two points
shows that they are in a cluster. Also the right side and
the left side points are in a cluster.

Lemma 3 In the structure A with k clusters, there are
two different choices from clusters which lead to the op-
timal solution of the GMST problem. In one of these so-
lutions the right side points choose in all clusters and in
other solution the left side points choose in all clusters.
The weight of the Euclidean MST (EMST) for these so-
lutions is

√
5(k − 1). Further, the weight of EMST in

every other selection of points except the aforementioned
two, is at leas 0.1 more than the weight of an optimal
solution.

Proof. See Appendix at the end of the article. □

With regard to this Lemma, there are two possible so-
lutions for the GMST problem for the structure A. We
assume where the right side points are selected from all
clusters to be equivalent to the case for which the vari-
able is True. Moreover we assume where the left side
points are selected from all clusters to be equivalent to
the case for which the variable is False.
These assumptions along with Lemma 3, provide the

necessary requirements to complete the design of the
variable gadgets. Suppose that the number of clauses
containing this variable is equal to c. For each of these
clauses, we posit a fixed point at a distance of 2 units
to one of the right side points in the direction of y.
Similarly, for each clause containing a variable negation,
a fixed point is placed at a distance of 2 units of one of
the left side points in the direction of y.
Because of these clauses are located above or below

this variable, we locate mentioned points above or below
the gadget. Additionally, we locate two points for spinal
path connections such that they don’t have any effect
on choosing the right or the left side points. Therefore,
these points should be selected in a way that they have
the same distances from the nearest right and left side
points in the structure A. So, the location of these
points are selected as (x + 0.5, y − 1) and (x + 2(k −
2) + 0.5, y − 1). Indeed, these are the endpoints of the
edges that establish the spinal path connections.
Figure 2 is an example of a variable gadget. This

Figure illustrates the variable such as z attending in
three clauses which z comes in one clause and z in the
other two.

2.2 Clause Gadget

Consider a sequence of points which are located in unit
distances along a line. A clause gadget is formed from
three of the mentioned sequences that collide at a point

..

z

.

z

.

z

.

SpinalPath

.

SpinalPath

Figure 2: An example of the variable gadget

[4]. Figure 3a is related to a node which is corresponding
to a clause in the orthogonally drawing. If we replace
this node with a clause gadget Figure 3b is obtained.

2.3 Reduction

We scale up orthogonally drawing with factor of 2 and
replace the graph nodes of the orthogonally drawing
with the introduced gadgets. This is also the case for
the graph edges which are exchanged with a sequence
of points located in a unit distances along the edges.
As pointed out before, in the orthogonally drawing,

each node is a box with the maximum size of deg(v)
2 ×

deg(v)
2 . Designed gadget may not fit into the intended

box in the orthogonally drawing, but size of this gadget
is at most (4(deg(v)−1)+2

√
5+1)×5 which is bounded

in the size of the box.
So far we converted each planar 3SAT instance to a

GMST instance. The next step at this point is to show
that every solution of the GMST problem is a solution
of the planar 3SAT problem. We used the orthogonally
drawing which is drawn in a (m+n

2 × m+n
2 )-grid, and

the drawing is polynomially bounded in the size of the
planar 3SAT instance. Hence the number of used fixed
points in this reduction is polynomially bounded in the
size of the planar 3SAT instance. These fixed points
have a unique MST with constant weight. Therefor,the
MST obtained from the gadgets themselves and their
connections determine the weight of the MST. Sum of
the MST weight of the connection between the spinal
path and the gadgets, and the MST weight of the fixed
points is denoted byWedges. Also the MST weight of the

.

(a) A clause node

.

(b) A clause gadget

Figure 3: Replacing a clause node in the orthogonally
drawing with a clause gadget
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gadgets and gadgets connections to edges is denoted by
Wclusters. So the total weight of MST is sum of Wedges

and Wclusters:

Wtotal = Wedges +Wclusters. (8)

In the optimal solution of MST, the connectivity
should be reached by minimum cost. Wedges has a con-
stant value, no matter which points are selected. The
connections between spinal paths and variable gadgets
have constant weight and these connections cause all
variable gadgets to be connected to each other. Now
we investigate connection of the edges to the variable
gadget. In the optimal solution of the GMST problem
each clause gadgets should be connected to a variable
gadget and the cost of each connection is 2 units. So
the total cost of these connections is twice the number
of all clauses. If only the right or the left side points
are selected in each gadget, the weight of the obtained
MST can be calculated as :

Wclusters = (
√
5(R− n)) + 2c+ 2n

√
4 + (0.5)2, (9)

where n is the number of variables, c is the number of
clauses and R is the number of all clusters. In this case,
each gadget is just connected to a clause containing the
variable or its negation. This means there is a True
assignment for the planar 3SAT problem. If Wclusters

is more than this value, there is at least one variable
gadget which is connected to a clauses containing the
variable and a clause containing variable negation. This
means there is no True assignment for the planar 3SAT
problem.
Now we show that the GMST problem does not have

an FPTAS unless P ̸= NP . Consider the existence
of an FPTAS for the GMST problem. Given a planar
3SAT instance, we build the GMST problem input as
explained previously and calculate Wtotal. We deter-
mine the ϵ value such that ϵ < 0.1

Wtotal
. So a (1 + ϵ)-

approximation solution for the GMST problem can be
used to verify whether there is a True assignment for the
planar 3SAT problem or not. Since the planar 3SAT is
NP-Hard, we can conclude there is no FPTAS for the
GMST problem unless P ̸= NP . □

3 Discussion

The maximization version of this problem has not been
studied yet. In this version, given a set P consisting
points in the plane which is partitioned into k clusters.

P = P1 ∪ P2 ∪ .... ∪ Pk ∀i ̸= j, Pi ∩ Pj = ∅. (10)

The GMST problem in the plane is to find maximum
MST which consists of exactly one point from each clus-
ter. Complexity of this problem and whether it has ap-
proximation algorithm with constant factor, would be
studied in future.
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Appendix

We prove lemma 3 in this part.
Lemma 3. Proof. In the structure A with k clusters

(pairs of points), there are two different choices from every
cluster which lead to optimal solution of the GMST problem.

Proof 2.1.in the structure A, every cluster regardless of
choice of points will be connected to the next cluster in solu-
tion of EMST. Also cluster k will be connected to the cluster
1 or k− 1. We consider L and R symbols, which are equiva-
lent to selection of the left side point and the right side point
in a cluster, respectively. Any selection of points in the clus-
ters are shown with sequence of these symbols. As an exam-
ple, LRR sequence shows that the left side point is chosen in
the first cluster and the right side point is chosen in the sec-
ond and third clusters. Now, we show the optimal solutions
are LLL....L sequence or RRR....R sequence. In these cases
because in EMST every cluster connects to the next cluster,
weight of optimal solution of EMST is

√
5(k− 1). We prove

this claim for LLL....L sequence, and for RRR....R sequence
will be proved similarly. In order to prove this claim, we as-
sume the right side point is chosen in one of the clusters. It
means we have LL...LRL...L. Consequently, in the cluster
in which the right side point is chosen and in the next and
the former cluster, EMST is as Figure 4a or Figure 4b and in
both cases weight of EMST is

√
10+

√
2. Therefore weight of

EMST in the entire structure is ((k−3)
√
5+

√
10+

√
2) and it

is (
√
10+

√
2−2

√
5) ≈ 0.1 more than weight of EMST when

the left side points are chosen in all clusters. When the right
side points are chosen in more than one consecutive cluster it
means we have LL...LRR...RL...L, yet the weight of EMST
is ((k− 3)

√
5+

√
10+

√
2) which is (

√
10+

√
2− 2

√
5) ≈ 0.1

more than Weight of EMST when the left side points are
chosen in all clusters. Consequently every time when the
consecutive left side points are chosen, at least 0.1 is added
to the weight of EMST.

As an example in LL...LR...RL...LR...RL...LL sequence,
the weight of EMST is 0.2 more than when all of the right
side points are chosen in all clusters. Optimal solutions of
structure A with k = 8 is shown in Figure 5. □

.

(a)

.

(b)

Figure 4: Part of EMST in LL...LRL...L sequence

.

(a)

.

(b)

Figure 5: Optimal solutions of structure A with k = 8.
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